

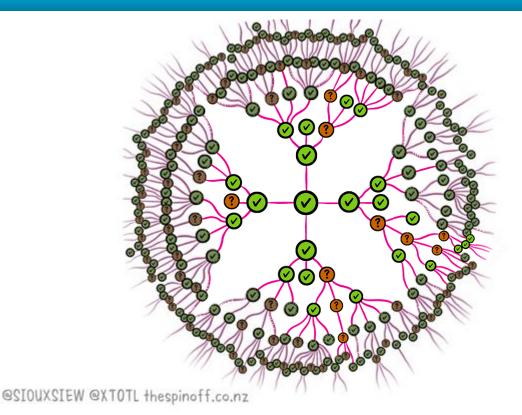
KOI TŪ: THE CENTRE FOR INFORMED FUTURES

Digital technology for contact tracing

Koi Tū webinar presented by Dr Andrew Chen

Friday 3 July, 12pm

Dr. Andrew Chen


PhD in Computer Systems Engineering

- AI and Machine Learning
- Computer Vision for surveillance
- Ethics and privacy of camera surveillance

Digital Technologies and Public Policy

- Technology's impact on societal resilience
- Analysing policy responses to COVID-19
- Analysing digital contact tracing in NZ

Contact Tracing

Rapid identification and isolation of new cases helps to break the chain of transmission and limit the spread of a communicable disease

Can technology help?

CC-BY-SA 4 0

Problem Definition

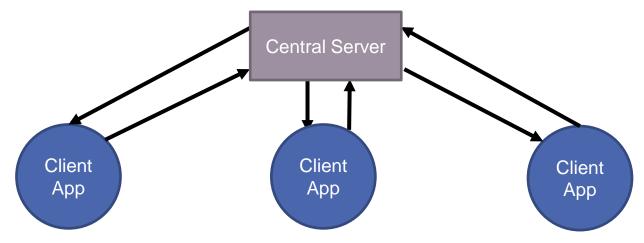
- Patient A tests positive for communicable disease X
- Who else could have been exposed?
 - Assuming a definition around risk (e.g. "close contact")
 - People known to Patient A
 - Interview the Patient and ask them
 - People unknown to Patient A
 - Where was Patient A at what times?
 - Who else was there at those times?
 - What risk of exposure was there for the other people?
- Identification and Isolation required as quickly as possible
 - Taking into account other impacts and policy choices

Completeness

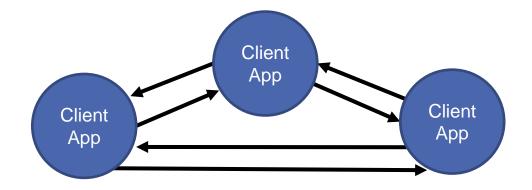
Speed

Adjacent Problems

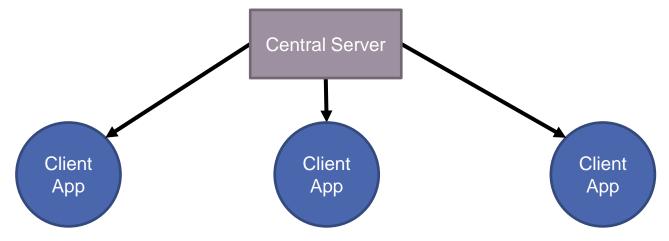
- Identifying transmission chains
 - Is there community transmission?
- Detecting potential environmental or contact transmission
 - Is there aerosol spread or surface contamination in the community?
- Enforcing isolation/quarantine of positive patients (geofencing)
 - Are people where they are supposed to be?
- Detecting breaches of social/physical distancing
 - Where are crowds forming?
- Symptom tracking and risk assessment
 - How sick do people feel, who should we test?
- Keeping economies open
 - Are we confident that we can cut off transmission chains quickly enough?

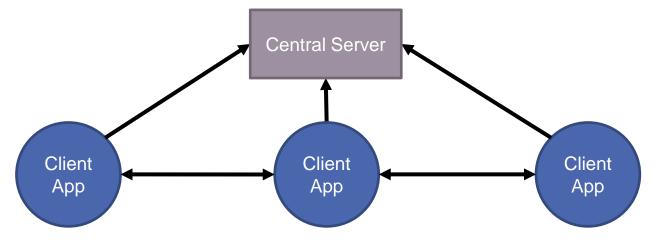

Technology Options

- Location Tracking
 - GPS, Wi-Fi Signals, Cell Tower Localisation [high-granularity]
 - Using signal strength, where is a person relative to a known point?
 - QR Codes, SMS (texting), Sign-in Forms [low-granularity]
 - Where and when did a person check-in at a known point?
- Proximity/Contact Detection
 - Bluetooth/BLE, IoT protocols
 - Which devices have been in proximity to a known device?
 - <u>CMU has combined BT with ultrasonic signals to improve accuracy</u>
- Investigative Surveillance
 - CCTV, biometrics, financial transaction data, virtual interviews
 - Mostly manual methods of determining time and place


Hardware

- Smartphones
 - Most have GPS, Wi-Fi, Bluetooth hardware built-in
 - 70-85% penetration in first-world countries
 - Operating system translates between software and hardware compatibility issues
- Less-smart Cellphones
 - Celltower geolocation and SMS texting available on more phones
 - 90-95% penetration in first-world countries
 - Lower granularity with the limited technology
- Wearables
 - StayHomeSafe bracelet (Hong Kong), TraceTogether Wearable Token (Singapore)
 - CovidCard (proposed in NZ)
 - Challenges with hardware supply chains, significant capital cost


- Centralised
 - All devices send tracking data to a central server
 - Central server finds exposure overlaps in locations and times
 - Messages sent back out to devices or public health officials conduct calls
 - Power is concentrated with holder of central server, privacy concerns


- Decentralised
 - All devices send messages about exposures to each other no central server
 - Devices check for overlaps against their own logs
 - Users shown notification to contact public health officials
 - Protects privacy from govt but makes it hard to measure effectiveness

- Semi-centralised (publishing)
 - Central server maintains list of exposure risk locations and times (from contact tracers)
 - Devices check for overlaps between central list and their own logs
 - Users shown notification to contact public health officials
 - Can be hard to measure effectiveness, minor privacy risk in publishing exposure logs

- Semi-decentralised (reporting)
 - Devices keep track of their own locations and times, or interactions
 - If someone tests positive, they electronically submit their log to the central server
 - Public health officials use other methods to find people with exposure risk
 - Minimises privacy risk for healthy people, can be hard to find people with exposure risk

Privacy

- The need for privacy is a response to imperfect trust
 - Proportionality of actions depends on social license and operating conditions
- What information is being collected?
 - Names, date of birth, phone number, e-mail address, physical address, biometrics
 - Health/Symptom data
 - Location logs with timestamps
- Who gets to see that information? What purpose is the information used for?
 - Need to limit use to public health response only
 - Appropriate checks and balances / data governance and oversight processes
- When will the information be destroyed?
 - Most location logs deleted after 1-2 months
 - May keep anonymised/aggregated data for analysis/research purposes

Policy Considerations

- Voluntary vs Mandatory
 - Uptake rate can be challenging: need 40-75% of population contributing useful data
- Universalism vs Targeted
 - Deploying tech to all people, or focusing on those who are more vulnerable
- Ability to participate
 - Smartphone penetration, compatibility with operating systems differs by country
 - Need to understand who might be left out (e.g. vulnerable populations at higher risk)
- Support vs Full Automation
 - Supporting manual contact tracing efforts with more information and speed?
 - Completely autonomous contact tracing without human intervention?
- Storage and Security
 - Consideration around local vs. offshore cloud data storage
 - Encryption of data in transmission and at rest, independent audits
 - Defending against bad actors e.g. scams, false positive attacks, denial of service

Slide 13

Case Study - Singapore

TraceTogether

- Smartphones exchange Bluetooth signals to record proximity
- If someone tests positive, proximity data provided to MOH [semi-decentralised]
 - Contact tracers then call people with exposure risk to advise on next steps
- Targeted 75% uptake rate <u>approx. 25% uptake</u> two months later (voluntary)
- Some usability challenges (particularly on iOS devices)
- Australia's <u>CovidSafe</u> is based on similar technology and methods
- Now also releasing wearable devices for vulnerable populations
- SafeEntry
 - QR-code system, all businesses required to adopt the system
 - Some venues making it compulsory to scan QR code before entry
 - Names, national identity number, mobile phone number, and check-in/out times
 - Data uploaded to cloud service [centralised]

Case Study – South Korea

- Contact tracers take a deep investigative approach
 - Use CCTV, credit card transactions, cellphone location tracking to find people
- CDC releases locations and times where patients have been [semi-centralised]
 - Private developers integrated the data into visual maps and apps
 - People compare maps against their own logs to self-identify exposure risk
 - Users notified if they were within 100m of where an active case was
- Popular amongst the people, but may have side effects
 - Can create perception of "high-risk areas" that people avoid
 - Released logs are "anonymous" but could have enough detail to de-anonymise
 - Logs include nationality, age, and gender of the patient
 - Privacy risk discourages people from reporting symptoms or getting tested
 - <u>Outbreak in LGBTQ nightclub area</u> could out people

Case Study – Poland

- Mandatory <u>Home Quarantine</u> app
 - Uses GPS data to monitor continuously
 - Users required to take a real-time selfie multiple times a day
 - Users have 20 mins to respond to request, facial recognition used to verify identity
 - Financial penalty for non-compliance, police visits as substitute
 - Voluntary <u>ProteGO Safe</u> app
 - Risk assessment test to provide people with relevant health advice
 - Health journal to keep track of symptoms
 - Bluetooth proximity detection, stored on the device for two weeks [semi-decentralised]
 - Random identifiers used for communication between devices, changed every hour
 - Exposure notifications sent back out to devices [semi-centralised]

Case Study – New Zealand

- Businesses must keep contact tracing registers (with some exceptions)
 - Pen-and-paper register template released by govt
- Private developers released QR code systems [mostly centralised but not with govt]
 - Helps speed up data entry for customers and reduces "dirty pen" risks
 - Reduces privacy risks in comparison to a pen-and-paper register
- Govt released <u>NZ COVID Tracer</u> app
 - QR codes can be generated based on NZBN for each location
 - Data stays on the device a "digital diary" for the individual
 - Can be electronically shared with MOH contact tracer requests [semi-decentralised]
 - Exposure notification functionality recently added [semi-centralised]
 - Has created significant usability problems shops have multiple QR codes!
 - Business obligations vs. voluntary individual efforts

Case Study – Apple/Google

- Apple/Google Exposure Notification Protocol
 - >98% of smartphones use Android/iOS allows interoperability
 - Could allow for cross-border contact tracing
 - Bluetooth handshakes record proximity automatically, at the OS layer
 - Each govt has to develop an app to interpret signals and provide local info
 - Devices communicate with each other only [decentralised]
 - Patients are flagged as active cases, devices compare logs against their own
 - Contacts sent notification to self-isolate/test and/or call contact tracers
 - Privacy restrictions and co-ordination <u>requirements set by Apple/Google</u>
 - Location services (GPS, Wi-Fi, etc.) must not be used
 - Governments must only use the data for the public health response
 - Initially, a few US states and parts of Europe (<u>Switzerland</u>, UK, Germany) adopting it
 - Some concerns about lack of visibility for public health officials

Usability

- If it's not simple, people won't use it!
- Passive vs Active Participation
 - Signals-based tracking can happen automatically
 - Bluetooth security restrictions on iOS required app in the foreground
 - QR codes require people to pull out their phones and scan them
- Consistency and Co-ordination
 - Government solutions may compete with privately developed solutions
 - Multiple solutions can create fragmentation and confusion
- Integration
 - Any solution needs to integrate with manual contact tracing processes
 - If the data is not useful or not interrogable by contact tracers, it may be ignored
 - Augment, not replace, manual contact tracing [where manual tracing is working]

Effectiveness

- Limited evidence on the effectiveness of tech-enabled contact tracing
 - Countries with voluntary systems have limited uptake
 - Relatively few new contacts found that manual systems missed
 - Limited evidence on speed dependency on enforcement mechanisms
 - Not much evidence on error rates in the wild, only in controlled tests
 - Need to consider recursive/cascading order effects in automated systems

Council of Europe: "Considering the absence of evidence of their efficacy, are the promises worth the predictable societal and legal risks?"

- **Operating Conditions**
 - In most countries, tech developed and released as case numbers fall
 - In other countries, contact tracing already ineffective/too late as case numbers rise
 - Other interventions simultaneously in place hard to separate effects

Tech for Contact Tracing

The theory and logic of digital contact tracing is sound But relatively untested in the real world Many non-technical considerations - it's complicated!

Tech solutions must be designed with public health goals first, in consultation with public health experts

Digital contact tracing for COVID-19 is a big experiment Jurisdictions have selected many different approaches We will have to analyse effectiveness ex post

@andrewtychen

andrew.chen@auckland.ac.nz

Original presentation template by SlidesCarnival